Joseph Audio Pulsar loudspeaker Measurements

Sidebar 3: Measurements

I used DRA Labs' MLSSA system and a calibrated DPA 4006 microphone to measure the Joseph Audio Pulsar's frequency response in the farfield, and an Earthworks QTC-40 for the nearfield and spatially averaged room responses. As Michael Fremer conjectured, the Pulsar is relatively insensitive, my estimate of its voltage sensitivity coming in at 83.5dB(B)/2.83V/m. However, as indicated by its plot of impedance magnitude and electrical phase against frequency (fig.1), the Pulsar is an easy load for the partnering amplifier to drive. Not only is the phase angle relatively low, the impedance remains above 8 ohms for most of the audioband, dropping below that value only in the lower midrange, to reach a minimum magnitude of 6.5 ohms at 210Hz.

Fig.1 Joseph Audio Pulsar, electrical impedance (solid) and phase (dashed) (2 ohms/vertical div.).

There is a small wrinkle between 400 and 500Hz in the impedance traces. Investigating the enclosure panels' vibrational behavior with a plastic-tape accelerometer, I did uncover a very mild resonant mode at 473Hz on the top panel (fig.2), and another at 395Hz that was most pronounced on the side panel (not shown). However, both modes were well down in level—the Pulsar's cabinet is commendably inert, which is probably why MF could get away with not filling the speaker stands' pillars with damping material.

Fig.2 Joseph Audio Pulsar, cumulative spectral-decay plot calculated from output of accelerometer fastened to center of top panel (MLS driving voltage to speaker, 7.55V; measurement bandwidth, 2kHz).

The saddle centered between 40 and 50Hz in the impedance-magnitude trace suggests that the tuning frequency of the large port on the speaker's rear lies in this region. Indeed, the minimum-motion notch in the woofer's nearfield output (fig.3, blue trace), which is where the woofer cone is held stationary by the back pressure from the port resonance, occurs at 45Hz. The port's output (fig.3, red trace) peaks between 30 and 70Hz, with a smooth upper-frequency rolloff marred by a resonant spike at 800Hz. Fortunately, the fact that the port faces away from the listener will work against the audibility of this behavior. Higher in frequency, the crossover between the woofer and the tweeter (fig.3, green trace) occurs at 1700Hz, and both drive-units are well behaved within their passbands. A couple of resonant modes disturb what would otherwise be the woofer's smooth low-pass rolloff, but these are well suppressed by the crossover.

Fig.3 Joseph Audio Pulsar, acoustic crossover on HF axis at 50", corrected for microphone response, with nearfield responses of woofer (blue trace) and port (red) plotted below 350Hz and 1kHz, respectively.

Fig.3 implies that the tweeter is 1–2dB more sensitive than the woofer, this idea reinforced by the top two octaves of the overall response on the tweeter axis (fig.4)—but, as MF commented, the Pulsar's overall tonal balance was indeed "remarkably flat from the upper midrange up." He also noted that the upper bass was slightly elevated, but as the rise in the bass response due to the nearfield measurement technique is mild, the Joseph's low-frequency alignment actually appears to be maximally flat, with a –6dB point around 40Hz.

Fig.4 Joseph Audio Pulsar, anechoic response on HF axis at 50", averaged across 30° horizontal window and corrected for microphone response, with complex sums of nearfield responses plotted below 300Hz.

The Pulsar's plot of lateral dispersion (fig.5) is uniform, other than a slight off-axis flare in the tweeter's bottom octave. As expected, the speaker's output drops off to the sides above 8kHz or so, which, in a room of typical size, will balance the slightly hot tweeter level in the same region. In the vertical plane (fig.6), a suckout develops in the crossover region more than 15° above or 20° below the tweeter axis, which suggests that the speaker's balance will be relatively immune to listener ear height.

Fig.5 Joseph Audio Pulsar, lateral response family at 50", normalized to response on HF axis, from back to front: differences in response 90–5° off axis, reference response, differences in response 5–90° off axis.

Fig.6 Joseph Audio Pulsar, vertical response family at 50", normalized to response on HF axis, from back to front: differences in response 45–5° above axis, reference response, differences in response 5–45° below axis.

I measured the Pulsar's spatially averaged in-room response in my usual manner, taking 20 spectra for the left and right speakers individually in a vertical rectangular grid centered on the positions of the listener's ears when sitting down. The result is shown in fig.7. The Pulsar produces a relatively flat balance from the midrange through the treble, though there is a slight excess of energy at the base of the tweeter's passband. Having auditioned the Pulsars in MF's room, I can confirm that this does not make them sound bright, but I suspect it does add to the sense of good information retrieval. Below the midrange, the reflections from the room boundaries produce a lack of energy in the upper bass and a peak between 40 and 65Hz, which is where the lowest-frequency mode in MF's room coincides with the tuning frequency of the Pulsar's port. I could hear the effect of this peak as an overwarm midbass; but, as MF noted, this elevated midbass wasn't accompanied by "the baggage of obvious bloat," presumably due to the critically damped reflex alignment.

Fig.7 Joseph Audio Pulsar, spatially averaged, 1/6-octave response in MF's listening room.

Turning to the time domain, the Pulsar's step response on the tweeter axis (fig.8) indicates that both drive-units are connected with positive acoustic polarity, and that the decay of the tweeter's step smoothly blends into the rise of the woofer's step. This suggests optimal crossover design. The cumulative spectral-decay plot (fig.9) is commendably clean, with the woofer's cone-breakup modes very well suppressed by the crossover. (The ridge of delayed energy just below 16kHz is due to the usual leakage from the computer's video circuitry.)

Fig.8 Joseph Audio Pulsar, step response on HF axis at 50" (5ms time window, 30kHz bandwidth).

Fig.9 Joseph Audio Pulsar, cumulative spectral-decay plot on HF axis at 50" (0.15ms risetime).

Looking over the Joseph Audio Pulsar's measured performance, I keep coming back to that superbly flat on-axis response and the well-damped, relatively inert enclosure. This is definitely a high-performance loudspeaker.—John Atkinson

Company Info
Joseph Audio Inc.
PO Box 1529
Melville, NY 11747
(800) 474-4434
Article Contents
Share | |
ppgr's picture
Wilson Maxx

Since Mr. Fremer refers to the Wilson Maxx in his review, it would be most interesting to compare measurements from both speakers (Wilson and Joseph) in the same room (Mr. Fremer's).

When comparing both curves side by side, the Wilson's measurements seem a little... er... embarrassing, especially considering the vast difference in size and cost.

Of course, measurements tell only part of the story, but I had the occasion to listen to both speakers, and the Joseph were very impressive, while the Wilson sounded like an impressive collection of stacked boxes.

To my ears, the Pulsar sounded light and nimble and fun (think Mazda Miata), while the Maxx we're kind of big and sluggish, especially on small scale music (think luxo SUV). 

JItterjaber's picture
I have heard few speakers

I have heard few speakers that have good time coherence/phase between drivers. The Josephs sounded good in the show demo I heard. Love those Norwegian soft dome tweeters!

AragonFan's picture
Lots to like about the Pulsars

I purchased a pair of Pulsars last year after being enormously impressed.  They do everything very well: soundstaging, imaging, frequency response, dynamics...all the typical audiophile parameters.  To me they sound like truly elite monitors without ever sounding fatiguing.  I can hear deeply into the mix when I want to listen analytically, and I can just enjoy the music anytime.  Overall, I suppose the best way to describe them as superbly balanced with thoughtful, effective performance tradeoffs (chiefly in ultimate dynamics and low bass response) for a two-way loudspeaker.

The tweeters are excellent, even arresting when handling well-recorded cymbals.  The attack, shimmer, and decay are all there.  The bass is also very good down to the lower 40 Hz area; and I think it sufficient for most music, at least music that I enjoy.  I am also using a REL R-218 subwoofer, dialed in to provide some support for the lowest octave and just above. The REL is the antithesis of slow, plodding bass and a very good match for the light-of-foot Pulsars.

My amplification and sources are quite good (Aragon Palladium 1K mono amps; Aragon 28K MKII preamp; Arcam FMJ CD-33 CD-Player), but hardly ultra-high end.  To my ears I am getting sound of a quality that I could spend twice or even three times to get, and then likely with only incremental improvements at the edges.  By any measure, $7,000 is a lot of money for a pair of loudspeakers ($8,400 including the REL R-218), but for me, the expense pays back in joy with my music.  Others' mileage may vary, but I am quite pleased.

Site Map / Direct Links